

STATE STREET INVESTMENT ANALYTICS

Introduction to Performance Measurement

26th September 2014 David Cullinan

STATE STREET GLOBAL SERVICES

STATE STREET INVESTMENT ANALYTICS

Return Methodologies

- MWR & TWR
- Arithmetic or Geometric
- Compounded & Annualised
- Benchmark Calculations
- Relative Returns
- Performance Attribution

Return Methodologies Money Weighted Return (MWR)

- The intuitive i.e. 'not rocket science' calculation
- The rate of return achieved over a period of time based upon a portfolio's initial and final values, income and cash flow
- It is calculated as follows:

- The quantum of assets has a bearing on the outcome
- Not all 'participants' have a bearing on this quantum so.....

Time Weighted Return (TWR)

- The problem?
- > £100 earned on a value of £1000 = 10%
- £50 earned on a value of £5000 = 1% = result c11%? but......
- £150/£3000 (average) = 5% !
- The Trustee impacts the quantum of assets through withdrawal e.g. pension payment
- Time weighted return is used to compare the performance of a portfolio removing this impact of cash flows
- Facilitates comparison of funds with different cash flows
- Facilitates comparison of portfolios with similar mandates
- Simply derived by compounding MWRs calculated over each period between 'external' cash flows

Return Methodologies Arithmetic or Geometric?

• The arithmetic difference adequately describes the relationship between a portfolio and its target, it is unsuitable for the construction of time series', quantifying growth in value or for inter fund comparison

• Whilst intuitively unappealing, a 'geometric' calculation (more jargon) overcomes these factors because it recognises the compounding effect of returns

• This is best illustrated by an example. . .

Return Methodologies Arithmetic or Geometric Example?

 A fund returns 7% each quarter, and the corresponding benchmark is 5%. Clearly the fund is 2% different (better) than benchmark each quarter and intuitively, 8% over the year, as below;

	Period 1	Period 2	Period 3	Period 4	Year
Fund	7.0	7.0	7.0	7.0	28.0
Benchmark	5.0	5.0	5.0	5.0	20.0
Difference	2.0	2.0	2.0	2.0	8.0

• Applying these to a portfolio valued at £100 gives us;

	Start Value	Period 1	Period 2	Period 3	Period 4	Year
Fund	100	107.0	114.5	122.5	131.1	
Benchmark	100	105.0	110.3	115.8	121.6	
% Difference		1.9	1.9	1.9	1.9	7.8%

• The **compounding** effect means that the relative % change in value isn't 8%, but 7.8%

Compounding Returns

- The process by which returns (or their contributions) are combined to produce longer term time series' – the statistical tricks are;
- ➤£101.3 v £100 = a 1.3% return, and 101.3/100 = 1.013

 In a simple example, if the monthly returns in October, November and December are +1.3%, -2.6% and +3.2% respectively then the quarterly return is:

 $(1.013 \times 0.974 \times 1.032) = 1.018 = 1.8\%$

- Simply, the individual percentage returns are divided by 100 and 1 added
- The recognisable outcome is simply readjusted by subtracting 1 then multiplying by 100

Return Methodologies Annualised Returns

- The 'average' return (per annum) which an asset would have had to earn to achieve its actual return over periods greater than one year
- For example; a portfolio's annual returns over three consecutive years are +11%, +32% and +26%. The actual return over three years, obtained by compounding the annual returns, is:

 $[(1.11 \times 1.32 \times 1.26) - 1] \times 100 = 84.6\%$

• The annualised return is the cube root of the three year return, i.e.,

$$[\sqrt[3]{(1 + 0.846)} - 1] \times 100 = 22.7\%$$

• i.e. three years at an average of 22.7% p.a. would give an actual return of 84.6%

Return Methodologies Benchmark Calculation

- A benchmark is a yardstick against which the portfolio is to be measured and can be made up of a single index or a composite of indices
- Examples: FTSE, S&P 500, MSCI World, BarCap Global Aggregate
- A composite benchmark is calculated as follows:

Investment	Weight %	Benchmark Return	Contribution
US Equities	35	5.0	35/100 x 5.0 = 1.75
World ex US Equities	35	3.0	35/100 x 3.0 = 1.05
Global Bonds	30	4.0	30/100 x 4.0 = 1.20
Total Benchmark			4.0

Return Methodologies Relative Return

- The ratio of return achieved by the portfolio and that achieved by it's chosen benchmark over a given time period
- For example, if a portfolio returned 26% against 20% for its benchmark, the relative return is:

$$\frac{1.26}{1.20} - 1 \times 100 = 5\%$$

• Using a ratio allows the size of the underlying returns as well as the size difference to be taken into account

Return Methodologies Performance Attribution

• An explanation of the difference between the fund and benchmark return by attributing the impact of key investment decisions.

Return Methodologies Performance Attribution

• Performance Attribution addresses the two key investment decisions;

1. Asset Allocation (or Policy)

– Did you have more/less invested in a good/poor performing investment category relative to the benchmark?

2. Stock Selection (or Manager Contribution)

- Were the returns achieved in each category better or worse than the benchmark?

Performance Attribution - Asset Allocation Calculation

- For example, an asset class comprises 50% of a fund's benchmark but only 45% of the actual allocation. It has returned 4% against the index of 2% and the overall benchmark is 5%.
- The Asset Allocation (or Policy) impact is calculated as follows:

Portfolio woight Bonchmark woight	v	Index Return	
Portiolio weight – Benchmark weight		Total Benchr	nark Return
45% – 50% = -5%	X	<u> 1.02 </u> 1.05	= -2.9%
	=	+0.1%	

 So, this Fund has benefited by 0.1% from underweighting an underperforming asset class

Performance Attribution - Stock Selection Calculation

• Using the same example the Stock Selection (or Manager Contribution) impact is calculated as follows:

• So, this Fund has gained a further 0.9% from the manager's performance relative to the benchmark that was set

Sample Performance Attribution

Asset Allocation			Stock Selection			
% Asset Weight		Performance	Investment	Performance	% Return	
Fund	B'Mark	Contribution	Category	Contribution	Fund	B'Mark
60	70	-0.1	US Equities	-0.8	10.0	11.5
30	30	0.0	Global Equities	-0.4	5.0	6.5
10		-0.5	Cash	0.1	5.0	4.5
		-0.6		-1.2		
8	3.0			[1	0.0
Fund Return			1	B'Marl	k Return	
			-1.8			
			Relative Return			

Evaluation & Measurement

Consider Temperature Checks (Peer Group)

Evaluation & Measurement Realistic Timescales

• Markets are cyclical

• Manager performance is cyclical

Evaluation & Measurement

Appreciate What Really Matters

TOTAL FUND v TARGET

BENCHMARK BETA

ALPHA

Performance Measurement Summary

- The process is simple
- It's important to identify and monitor the performance of all contributors asset strategy and asset managers
- Appreciate what really matters
- There is a clearly defined and appropriate order in which to define a fund's 'working' benchmark
- This benchmark needs to be continually monitored
- Be realistic about timescales

STATE STREET GLOBAL SERVICES.

STATE STREET INVESTMENT ANALYTICS

Introduction to Risk

- Performance is not just about returns
- Risk is important; risk parameters should be an integral part of setting investment strategy
- Risk is the confidence attaching to a particular outcome (High risk = Low confidence and vice versa)
- Risk generally defined as volatility of returns
- Standard deviation is a measure of volatility

Introduction to Risk Types of Risk Measures

Ex-Post

- Translated from Latin means "after the fact"
- Observes historical risk and return values

Ex-Ante

- Translated from Latin means "before the event"
- Refers to future events, such as future returns
- Uses forward looking analytics such as VaR

STATE STREET GLOBAL SERVICES.

STATE STREET INVESTMENT ANALYTICS

Introduction to Risk

- People come in lots of different heights. Let's think about the height of UK men.
- The average man is 5'9". This means half of all men are taller than 5'9", and half are shorter than 5'9".
- Men's height falls onto what's called a standard distribution, or a bell curve.
- Out of one hundred men, about 2/3 of them, are between 5'6" and 6'. About 2/3 of all men are 5'9" ± 3".
- About 1/3 of them are outside this range, with about half of those on each side. So, about 1/6 are 6'1" or taller, and about 1/6 are 5'5" or shorter.

• Consider returns

- Here are 50 funds' performances
- Most funds are clustered around a range band
- We can represent this statistically

Introduction to Risk Standard Deviation

- In a normal distribution, about 2/3rds (67%) of the area under the curve lies within one standard deviation of the mean.
- In our example, the mean is 5%, Standard Deviation is 20% and 2/3rds of observations lie between -15% and 25%.

Introduction to Risk Other Key Terms

Volatility or Absolute Risk

• Measures the standard deviation of the portfolio returns

Tracking Error or Relative Risk or Active Risk

 Measures the standard deviation of the difference between the portfolio and benchmark returns

Introduction to Risk Comparing Profiles

- It's important to consider risk and return when looking at investments
- Which fund below is better from a risk reward perspective?

	Annualised Return (% p.a.)
Fund A	12.5
Fund B	12.5

Introduction to Risk Comparing Profiles

- Fund B has a very different profile than Fund A
- Fund A has delivered a better risk adjusted return
- Generally expect extra return for greater risk otherwise why take it on?
- There are no guarantees though!

Introduction to Risk Comparing Profiles

• By using the return series, you can calculate the standard deviation

	Year 1	Year 2	Year 3	Year 4	Annualised Return (% p.a.)	Standard Deviation (% p.a.)
Fund A	+10	+15	+8	+17	12.5	4.2
Fund B	+22	+15	-5	+20	12.5	12.4

- Both funds achieve the same annualised return with different levels of risk
- Fund A has delivered a much better *risk adjusted* return
- This table of data contains much better information

Introduction to Risk Correlation

- Important to understand correlation
- Not all asset types grow or contract at the same rate or same time
- Careful blending of these can shape overall volatility
 - > positively correlated assets will amplify volatility
 - negatively correlated assets will dampen volatility
- This is key to risk budgeting

Introduction to Risk Information Ratio's (I.R.)

- A simple measure used to quantify a mangers skill in converting risk into excess return (alpha)
- Put simply; Relative **RETURN** divided by the relative **RISK**
- Skilled active management purports to offers IR's > 0.5
- Our research over many years shows;
 - 0.2 0.3 is top quartile or skilled
 - 0.5 is top decile or extremely skilled
- The current average is positive, but near zero after fees!

Skill is not a commodity It can't be bought It can't be predicted It doesn't persist

Introduction to Risk Evaluation – Absolute Risk & Return

Introduction to Risk Relative Profile

Introduction to Risk Important to Monitor Progress/Track Changes

Introduction to Risk Long Term Risk & Return Trade off

Long Term LA Universe Risk and Return to end March 2014

* Source: State Street Investment Analytics, 2014.

Past performance is not a reliable indicator of future results.

Is the whole Fund behaving as budgeted?

Are Our Managers' Behaviours Appropriate

Are Our Managers' Behaviours Appropriate

Are Our Managers' Behaviours Appropriate

Local Authority Universe 5 Years to end March 2014

Variability of Returns % p.a.

Introduction to Risk Summary

- Risk is not a bad thing
- Risk is all about variability and confidence in outcomes
- Risk is required to outperform

asset class risk to outperform a risk free rate

manager relative risk to outperform the asset benchmark

- Investment strategy cannot be set without explicit reference to risk
- Risk can set boundaries for appropriate behaviour
- Risk can highlight inappropriate behaviour

STATE STREET GLOBAL SERVICES

STATE STREET INVESTMENT ANALYTICS

Trends & Observations

- Accessing equity
- Accessing bonds
- Funds seeking better risk adjusted returns
- Running costs
- Appetite for reporting net of fees
- Focus on benchmarks

STATE STREET GLOBAL SERVICES.

STATE STREET INVESTMENT ANALYTICS

Contact details for further information

David Cullinan

State Street Investment Analytics 525 Ferry Road, Edinburgh EH5 2AW

0131 315 5350

David.cullinan@statestreet.com

